Improving data exploration methods from macro imaging techniques: in situ scanning macro-xrf investigation on a majolica tile tableau

Main Article Content

Marco Colombo
Stijn Legrand
Geert Van der Snickt
Koen Janssens


A state-of-the-art method for non-invasive visualization of subsurface layers present in works of art is for the fi rst time employed to study an Antwerp majolica tile tableau manufactured in the mid of the 16th century. Scanning macro x-ray fl uorescence mapping (MA-XRF), was used to determine the characteristic elements of the renaissance majolica production and the pigments that were used for the colourful painting present on the tableau. Furthermore, the interpretation of the ensuing elemental images, allowed to visualize earlier retouchings and to distinguish original tiles from pieces that were introduced during 19th and 20th century restoration campaigns.


Não há dados estatísticos.


Alaimo, R., Bultrini, G., Fragalà, I., Giarrusso, R., Iliopoulos, I., Montana, G. (2004). Archaeometry of Sicilian glazed pottery. Applied Physics A, 79(2), 221–227.

Alfeld, M., Janssens, K., Dik, J., De Nolf, W., Van der Snickt, G. (2011). Optimization of mobile scanning macro-XRF systems for the in-situ investigation of historical paintings. Journal of Analytical Atomic Spectrometry, 26(5), 899–909.

Alfeld, M., Janssens, K. (2015). Strategies for processing mega-pixel X-ray fl uorescence hyperspectral data: a case study on a version of Caravaggio’s painting Supper at Emmaus. Journal of Analytical Atomic Spectrometry, 30(3), 777–789.

Bersani, D., Lottici, P. P., Virgenti, S., Sodo, A., Malvestuto, G., Botti, A., … Catarsi, M. (2010). Multi-technique investigation of archaeological pottery from Parma (Italy). Journal of Raman Spectroscopy, 41(11), 1556–1561.

Berti, G. (1995). Introduzione di nuove tecniche ceramiche nell’Italia centro-settentrionale. In All’Insegna del Giglio (Ed.), Acculturazione e mutamenti: prospettive nell’archeologia medievale del Mediterraneo (pp. 263–283).

Caignie., F. (2015, April). Majolicategels in het MAS | Collectie Vleeshuis. Retrieved from

Cartechini, L., Rosi, F., Miliani, C., D’Acapito, F., Brunetti, G. B., Sgamellotti, A. (2011). Modifi ed Naples yellow in Renaissance majolica: study of Pb-Sb-Zn and Pb-Sb-Fe ternary pyroantimonates by X-ray absorption spectroscopy. Journal of Analytical Atomic Spectrometry, 26(12), 2500-2507.

Catapano, I., Affi nito, A., Guerriero, L., Bisceglia, B., Soldovieri, F. (2016). Majolica imaging with THz waves: preliminary results. Applied Physics A, 122(533), 1-11.

Chiarantini, L., Gallo, F., Rimondi, V., Benvenuti, M., Costagliola, P., Dini, A. (2015). Early renaissance production recipes for Naples yellow pigment: a mineralogical and lead isotope study of Italian majolica from Montelupo (Florence). Archaeometry, 57(5), 879–896.

Coentro, S., Mimoso, J. M., Lima, M. A., Santos, S. A., Pais, A. N., Muralha, F. S. V. (2012). Multi-analytical identifi cation of pigments and pigment mixtures used in 17th century Portuguese azulejos. Journal of the European Ceramic Society, 32(1), 37-48.

Cultrone, G., Rodriguez-Navarro, C., Sebastian, E., Cazalla, O., Jose De La Torre, M. (2001). Carbonate and silicate phase reactions during ceramic fi ring. European Journal of Mineralogy, 13(3), 621–634.

Da Silva, T. A., Legrand, S., Van der Snickt, G., Featherstone, R., Janssens, K., Bottinelli, G. (2017). MA-XRF imaging on René Magritte’s La condition humaine: insights into the artist’s palette and technique and the discovery of a third quarter of La pose enchantée. Heritage Science, 5(37), 1-9.

Fares, M., Mimoso, J. M., Pais, A. N., Martins, I. M., Coentro, S., Pereira, S. M., Muralha, V. S. (2012). Azulejo blues – An analytical study of the blue colors in Portuguese azulejos. Paper presented at the International Conference Azulejar, Aveiro, Portugal. Retrieved from

Guirao, D., Pla, F., Acosta, A. (2014). The archaeometric characterization of majolica ceramics from Talavera De La Reina and El Puente Del Arzobispo (Toledo, Spain). Archaeometry, 56(5), 746–763.

Karasu, B., Turan, S. (2002). Eff ects of cobalt, copper, manganese and titanium oxide additions on the microstructures of zinc containing soft porcelain glazes. Journal of the European Ceramic Society, 22(9-10), 1447–1455.

Mimoso, J. M., Santos, S. A., Milagre, M. I., Rodrigues, C. D., Morais, P. S., Esteves, L., Pais, A. N. (2012). Analytical study of tiles of presumed Flemish origin from the Palace of the Dukes of Braganza in Vila Viçosa. In Direcção-Geral do Património Cultural e Fundação da Casa de Bragança (Ed.), From Flanders. The azulejos commissioned by D.Teodósio I, 5thDuke of Braganza (c. 1510-1563) (pp. 62-72).

Mimoso, J. M. (2015, July). Origin, early history and technology of the blue pigment in azulejos. Paper presented at the International Conference on Glazed Ceramics in Architectural Heritage, Lisbon, Portugal. Retrieved from

Orecchio, S. (2013). Microanalytical characterization of decorations in handmade ancient fl oor tiles using inductively coupled plasma optical emission spectrometry (ICP-OES). Microchemical Journal, 108, 137-150.

Padeletti, G., Fermo, P. (2003). Italian Renaissance and Hispano-Moresque lustre-decorated majolicas: imitation cases of Hispano-Moresque style in central Italy. Applied Physics A, 77(1), 125–133.

Padilla, R., Schalm, O., Janssens, K., Arrazcaeta, R., Van Espen, P. (2005). Microanalytical characterization of surface decoration in Majolica pottery. Analytica Chimica Acta, 535(1-2), 201-211.

Pérez-Arantegui, J., Montull, B., Resano, M., Ortega, M. J. (2009). Materials and technological evolution of ancient cobalt-blue-decorated ceramics: Pigments and work patterns in tin-glazed objects from Aragon (Spain) from the 15th to the 18th century AD. Journal of the European Ceramic Society, 29(12), 2499–2509.

Roldán, C., Coll, J., Ferrero, J. (2006). EDXRF analysis of blue pigments used in Valencian ceramics from the 14th century to modern times. Journal of Cultural Heritage, 7(2), 134–138.

Schalm, O., Van der Linden, V., Frederickx, P., Luyten, S., Van der Snickt, G., Caen, J., Schryvers, D., … Schreiner, M. (2009). Enamels in stained glass windows: Preparation, chemical composition, microstructure and causes of deterioration. Spectrochimica Acta Part B, 64(8), 812–820.

Sendova, M., Kaiser, B., Scalerac, M., Zhelyaskova, V. (2010). Della Robbia blue glaze: micro- Raman temperature study and X-ray fl uorescence spectroscopy characterization. Journal of Raman Spectroscopy, 41(4), 469–472.

Solé, V. A., Papillon, E., Cotte, M., Walter, Ph., Susini, J. (2007). A multiplatform code for the analysis of energy-dispersive X-ray fl uorescence spectra. Spectrochimica Acta Part B, 62(1), 63–68.

Rice, M. P. (1996). Recent Ceramic Analysis: 1. Function, Style, and Origins. Journal of Archaeological Research, 4(2), 133-163.

Tite, M. S. (2008). Ceramic production, provenience and use - a review. Archaeometry, 50(2), 216-231.

Tite, M. S. (2009). The production technology of Italian maiolica: a reassessment. Journal of Archaeological Science, 36(10), 2065-2080.

Tite, M. S., Freestone, I., Mason, R., Molera, J., Vendrell-saz, M., Wood, N. (1998). Lead glazes in antiquity-methods of production and reasons for use. Archaeometry, 40(2), 241–260.

Townsend, J. (2006). What is Conservation Science?. Macromolecular Symposia, 238(1), 1-10.

Van de Voorde, L., Vandevijvere, M., Vekemans, B., Van Pevenage, J., Caen, J., Vandenabeele, P., ... Vincze, L. (2014). Study of a unique 16th century Antwerp majolica fl oor in the Rameyenhof castle’s chapel by means of X-ray fl uorescence and portable Raman analytical instrumentation. Spectrochimica Acta Part B, 102(1), 28-35.