Fast and non-invasive identification of binding media in easel paintings by a portable hyperspectral sensor

Main Article Content

Cong Wang
Sandro Moretti
Mara Camaiti

Resumo

A portable hyperspectral sensor collects reflectance spectra in the 350-2500 nm range, allowing the identification of not only inorganic but also organiac materials. In this paper, a non-invasive and non-destructive characterization of pictorial binders was used. The results show that their main spectral differences are located between 1200-2400 nm. It is also indicated that when a binder is mixed with colorants, some modifications occur in respect to its original spectrum. In addition, the first derivative transformation of original spectra allows an easier identification of these organic binders, where the most discriminating regions are 1160-1250 nm and 1660-1800 nm.

Downloads

Não há dados estatísticos.

Referências

Aberásturi, F., Jiménez, A. I., Jiménez, F., Arias, J. J. (2001). UV-Visible First-Derivative Spectrophotometry Applied to an Analysis of a Vitamin Mixture. Journal of Chemical Education, 78, 793-795. https://doi.org/10.1021/ed078p793

Aceto, M., Agostino, A., Fenoglio, G., Gulmini, M., Bianco, V. & Pellizzi, E. (2012). Non invasive analysis of miniature paintings: proposal for an analytical protocol. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 91, 352-359. https://doi.org/10.1016/j.saa.2012.02.021

Aceto, M., Agostino, A., Fenoglio, G., & Picollo, M. (2013). Non-invasive differentiation between natural and synthetic ultramarine blue pigments by means of 250–900 nm FORS analysis. Analytical Methods, 5, 4184-4198. https://doi.org/10.1039/c3ay40583d

Aceto, M., Agostino, A., Fenoglio, G., Idone, A., Gulmini, M., Picollo, M., Delaney, J. K. (2014). Characterisation of colourants on illuminated manuscripts by portable fibre optic UV-visible-NIR reflectance spectrophotometry. Analytical Methods, 6, 1488-1500. https://doi.org/10.1039/c3ay41904e

Bacci, M., Baronti, S., Casini, A., Lotti, F., Picollo, M., & Casazza, O. (1992). Non-destructive spectroscopic investigations on paintings using optical fibers. Materials Research Society Symposium Proceedings (pp. 265-283). San Francisco, USA. https://doi.org/10.1557/proc-267-265

Bacci, M. (1995). Fibre optics applications to works of art. Sensors and Actuators B, 29,190-196. https://doi.org/10.1016/0925-4005(95)01682-1

Bacci M., Magrini D., Picollo M., & Vervat M. (2009). A study of the blue colors used by Telemaco Signorini (1835–1901). Journal of Cultural Heritage, 10, 275-280. https://doi.org/10.1016/j.culher.2008.05.006

Ben-Dar, E. Inbar, Y. & Chen, Y. (1997). The reflectance spectra of organic matter in the Visible Near-Infrared and Short Wave Infrared Region (400-2500 nm) during a controlled decomposition process. Remote Sensing Environment, 61, 1-15. https://doi.org/10.1016/s0034-4257(96)00120-4

Camaiti, M., Vettori, S., Benvenuti, M., Chiarantini, L., Costagliola, P., Benedetto, Pecchioni, E. (2008). Hyperspectral sensor for gypsum detection on monumental buildings. Journal of Geophysics and Engineering, 8, 126-131. https://doi.org/10.1088/1742-2132/8/3/s12

Cennini C. (1991). Il libro dell‘arte. Firenze: S.p.A Armando Paoletti.

Clark, R. N., King, T. V. V., Klejwa, M., Swayze, G. A. (1990). High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical Research, 95, 12653-12680. https://doi.org/10.1029/jb095ib08p12653

Clark, R, N. (1999). Remote Sensing for the Earth Sciences: Manual of Remote Sensing. In A. N. Rencz, Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy (pp. 3-25). New York: John Wiley & Sons, Inc.

Clark, R. N., Swayze, G. A., Wise, R., Livo, K. E., Hoefen, T. M., Kokaly, R. F. & Sutley, S. J. (2003). USGS Digital Spectral Library splib05a, U.S. Geological Survey. https://doi.org/10.3133/ofr03395

Cosentino, A., (2014a). Identification of pigments by multispectral imaging; a flowchart method. Heritage Science, 2, 8.

Cosentino, A. (2014b). FORS Spectral Database of Historical Pigments in Different Binders. e-conservation Journal, 2, 53-65.

Dooley, K. A., Coddington, J., Krueger, J., Conover, D. M., Loew, M., & Delaney, J. K. (2017). Standoff chemical imaging finds evidence for Jackson Pollock’s selective use of alkyd and oil binding media in a famous ‘drip’ painting. Analytical Methods, 9, 28-37. https://doi.org/10.1039/c6ay01795a

Dupuis, G., Elias, M., & Simonot, L. (2002). Pigment Identification by Fiber-Optics Diffuse Reflectance Spectroscopy. Applied Spectroscopy, 56, 1329-1336. https://doi.org/10.1366/000370202760354803

Gaffey, J. S. (1986). Spectral reflectance of carbonate minerals in the visible and near infrared (0.35-2.55 microns); calcite, aragonite, and dolomite. American Mineralogist, 71(1-2), 151-162.

IFAC-CNR Database (2014). Fiber Optics Reflectance Spectra (FORS) of Pictorial Materials in the 270-1700 nm range. Retrieved from http://fors.ifac.cnr.it.

Maynez-Rojas, M. A., Casanova-González, E., & Ruvalcaba-Sil, J. L. (2017). Identification of natural red and purple dyes on textiles by Fiber-optics Reflectance Spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 178, 239-250. https://doi.org/10.1016/j.saa.2017.02.019

Ramakrishnan, D. & Bharti, R. (2015). Hyperspectral remote sensing and geological applications. Current Science, 108, 879-891.

Ricciardi, P., Pallipurath, A., & Rose, K. (2013). ‘It’s not easy being green’: a spectroscopic study of green pigments used in illuminated manuscripts. Analytical Methods, 5, 3819–3824. https://doi.org/10.1039/c3ay40530c

Tsai, F., & Philpot, W. (1998). Derivative Analysis of Hyperspectral Data. Remote Sensing of Environment, 66, 41–51. https://doi.org/10.1016/s0034-4257(98)00032-7

Vagnini, M., Miliani, C., Cartechini, L., Rocchi, P., Brunetti, B. G. & Sgamellotti A. (2009). FT-NIR spectroscopy for non-invasive identification of natural polymers and resins in easel paintings. Analytical and Bioanalytical Chemistry, 395, 2107–2118. https://doi.org/10.1007/s00216-009-3145-6