Exploring the use of Acidithiobacillus Ferrooxidans for the removal of Sulphides from Tarnished Silver

Main Article Content

Giel Scheepers
http://orcid.org/0000-0003-3128-9436
Margot Koster
http://orcid.org/0000-0003-1810-242X
Joosje van Bennekom
http://orcid.org/0000-0001-8977-2805

Abstract

Tarnished silver objects contain a black layer of silver sulfide. Current cleaning methods are not suitable for fragile objects, therefore, this exploratory study set out to develop a new biology-based method to clean silver. The extremophile bacterium Acidithiobacillus ferrooxidans was considered the most promising candidate, because of its ability to oxidize metal sulfides. The bacterium indirectly removed silver sulfide from tarnished silver coupons, through the generation of ferric iron. However, this procedure etched the silver. It was investigated whether A. ferrooxidans was able to directly oxidize silver sulfide in the absence of iron. However, no removal of silver sulfide was observed.

Keywords: Silver, Fragile silver, Silver sulfide, Tarnish removal, A. ferrooxidans, Bio-inspired innovation

Downloads

Download data is not yet available.

References

Araújo, R., Nabais, P., Pombo Cardoso, I., Casanova, C., Lemos, A., & Melo, M. J. (2018). Silver paints in medieval manuscripts: a first molecular survey into their degradation. Heritage Science, 6(1). https://doi.org/10.1186/s40494-018-0172-7

ATCC. (n.d.). ATCC Medium: 2039 Acidithiobacillus ferrooxidans Medium. Retrieved June 13, 2018, from http://www.lgcstandards-atcc.org/~/media/4C29EA2E2A0749BB9354D8AC64AA715B.ashx

Bennekom, J. van, Hoffman, S., Pappot, A., Davidowitz, T., & Biemond, D. J. (2017). Conservation of the 16th-century Merkelsche Tafelaufsatzs created by the German goldsmith Wenzel Jamnitzer. In ICOM-CC 18th Triennial Conference Preprints. Copenhagen: M-ICOM-CC.

Bosch-Roig, P., & Ranalli, G. (2014). The safety of biocleaning technologies for cultural heritage. Frontiers in Microbiology, 5. https://doi.org/10.3389/fmicb.2014.00155

Contreras-Vargas, J., Ruvalcaba-Sil, J. L., & Rodriguez-Gomez, F. J. (2013). Effects of the Cleaning of Silver with Acidified Thiourea. In Metal 2013 Proceedings of the Interim Meeting for the International Council of Museums Committee for Conservation Metal Working Group, (223–228). Edinburgh: Historical Scotland.

Comensoli, L., Kooli, W., Monachon, M., Albini, M., Junier, P. & Joseph, E. (2019). The Potential of Microorganisms for the Conservation-Restoration of Iron Artworks. In Metal 2019 Proceedings of the interim meeting of the ICOM-CC Metals Working Group, September 2-6-Neuchâtel, Switzerland (242-250). Neuchâtel: ICOM-CC.

Costa, V. (2001). The deterioration of silver alloys and some aspects of their conservation. Studies in Conservation, 46 (sup1), 18–34. https://doi.org/10.1179/sic.2001.46.Supplement-1.18

Donati, E. R., & Sand, W. (2007). Microbial Processing of Metal Sulfides. Dordrecht: Springer.

Ehrlich, H. L. (2016). Geomicrobiology. In H. L. Ehrlich, D. K. Newman, & A. Kappler( Eds.), Sixth edition. Boca Raton, Florida: CRC Press.

Gutkecht, N., & Joseph, E. (2019). Stabilization of Archaeological Copper Alloy objects from Chloride Induced Active Corrosion with Beauveria bassiana. Metal2019 Proceedings of the interim meeting of the ICOM-CC Metals Working Group, September 2-6-Neuchâtel, Switzerland (257-261). Neuchâtel: ICOM-CC.

Hoffman, L. E. (1975). The Effect of Thiobacillus ferrooxidans on argentite, stibnite and a stibnite silver ore. MA Thesis. Reno: University of Nevada.

Hoffman, L. E., & Hendrix, J. L. (1976). Inhibition of Thiobacillus ferrooxidans by Soluble Silver. Journal of the American Chemical Society, 62(4), 995–997. https://doi.org/10.1021/ja01861a077

Kelly, D. P., & Wood, A. P. (2000). Reclassification of some species of Thiobacillus Acidithiobacillus gen. nov., Halothiobacillus. International Journal of Systematic and Evolutionary Microbiology, 50 (May), 511–516. https://doi.org/10.1099/00207713-50-2-511

Lilova, K., & Karamanev, D. (2005). Direct oxidation of copper sulfide by a biofilm of Acidithiobacillus ferrooxidans. Hydrometallurgy, 80(3), 147–154. https://doi.org/10.1016/j.hydromet.2004.12.010

Palomar, T., Barat, B. R., García, E., & Cano, E. (2016). A comparative study of cleaning methods for tarnished silver. Journal of Cultural Heritage, 17, 20–26. https://doi.org/10.1016/j.culher.2015.07.012

Rawlings, D. E. (2002). Heavy Metal Mining Using Microbes. Annual Review of Microbiology, 56(1), 65–91. https://doi.org/10.1146/annurev.micro.56.012302.161052

Reardon, A. C. (2011). Metallurgy for the non-Metallurgist. Endocytobiology IV (Second edition). Ohio: ASM International. https://doi.org/10.1016/S0031-0182(11)00557-8

Sakaguchi, H., Torma, A. E., & Silver, M. (1976). Microbiological oxidation of synthetic chalcocite and covellite by Thiobacillus ferroxidans. Applied and Environmental Microbiology, 31(1).

Schippers, A. (2004). Biogeochemistry of metal sulfide oxidation in mining environments, sediments, and soils. Geological Society of America, 379, 49–62. https://doi.org/10.1130/0-8137-2379-5.49

Wu, X. Ling, Qiu, G. Zhou, Gao, J., Ding, J. Nan, Kang, J., & Liu, X. Xing. (2007). Mutagenic breeding of silver-resistant Acidithiobacillus ferrooxidans and exploration of resistant mechanism. Transactions of Nonferrous Metals Society of China (English Edition), 17(2), 412–417. https://doi.org/10.1016/S1003-6326(07)60107-1